Algorithms for studying the structure and function of genomes

Michael Schatz

CSH

Feb 5, 2015 JHU Dept. of Biology

Schatzlab Overview

Human Genetics

Role of mutations in disease

Narzisi et al. (2014) lossifov et al. (2014)

Plant Biology

Genomes & Transcriptomes

Schatz et al. (2014) Ming et al. (2013)

Algorithmics & Systems Research

Ultra-large scale biocomputing

Blood et al. (2014) Schatz et al. (2013)

Single Cell & Single Molecule

CNVs, SVs, & Cell Phylogenetics

Garvin et al. (2014) Roberts et al. (2013)

Genome Structure & Function

I. Structure: Sequencing and Assembly Long Read Single Molecule Sequencing

2. Function: Disease Analytics

The role of indels in autism spectrum disorders

Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

It	was	thevb	esthef	bes tinfes ini	esyas tilae	whoers trop	of times,	it was the	a ggeb	fv ivsitschom ij	t itvæas h	e athe affo	ofistolistanes	is,
									_					
It	was	theve	esthe	of times,	t was the	ne wors	st of times	, it was th	e taloge aoge	wisotatio	nwit s th	newaget befe	glistineolish	ness,
T+ ,	woo	fb er	abdet	hftimedint	wood with	tazoratua	f times .	t it was the	a ore of t	mindom	it was	the ore of	ithelighner	
10	was	uuwa	SULLEL	Destinestin	waa waa			, it was ui	t age of	wisuom, i	It was			\$5,
It	was	t the	sbielset	besime sint	es, was ab	theomstre	f times,es	it was the	e age of	vi sciedo,ni	t, istavas	tehæg age f fo	offsbolisbne	ss,
				1			1							
It	w	alst tilhæ	esbtelset	b£sim€sin	eit, utawab	theowstre	of of times	, it was th	e age of o	ofisodomi	t, ivtavsatsh	nthæge øligfe	ofistoolisstanes	ss,

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

N50 size

Def: 50% of the genome is in contigs as large as the N50 value

N50 size = 30 kbp (300k+100k+45k+45k+30k = 520k >= 500kbp)

A greater N50 is indicative of improvement in every dimension:

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization
- Better sequence for all downstream analysis

Assembly Applications

Novel genomes

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Like Dickens, we must computationally reconstruct a genome from short fragments

Genomics Across the Tree of Life

ARTICLES

The map-based sequence of the rice genome

International Rice Genome Sequencing Project"

Rice, one of the world and is a model plact 9 389 Mb genome, inclutranspossible-element Arabelopuls. In a recip protectes. Twenty-nic classes of transposels makes and acryleum p nuclear chromosomes traits. The additional socializate improvement

Ov	Sequenced haven (bp)	Gaps No.	Length (Mb)	Teloments gaps* (Mts)	Centromeric gap1 (Htt)	YONA; (Mb)	Tatal DNto	Coveraget (%)
1	43,260,640	5	0.33	0.06	1.40		45.05	991
2	35,954,074	3	0.10	0.01	0.72		36.78	99.7
3	36,189,985	4	0.96	0.04	0.18		37.37	97.3
4	35,489,479	3	0.46	0.20			36.15	98.7
5	29,733,216	6	0.22	0.05			30.00	99.3
6	30,731,386	1	0.02	0.03	0.82		31.60	99.8
7	29,643,843	- R.	0.31	0.01	0.32		30.35	98.9
8	28,434,680	1	0.09	0.05			28.57	997
9.0	22,692,709	-4	0.13	0.14	56.0	6.95	30.53	98.8
10	22,683,701	4	0.68	0.13	0.47		23.96	96.6
11	28,357,783	4	0.21	0.04	1.90	0.25	30.76	99.1
12	27.561.960	0	0.00	0.05	0.16		27.77	99.8
A/1	370,733,456	- 36	3.51	0.81	6.59	7.20	388.82	98.9

Contig N50: 5.1Mbp Total projects costs: >\$100M

Initial Assembly Attempts with early Illumina sequencers circa 2007-2008 older Illumina PE76 library with small insert size -150bp)

******		NOT GOING NOT	Main contribution	Types accountly non
Veloci	25X Npportare	104960	21833ho	325.8 Mbr
Veluel	SEX Neportiem	41100	23080ko	401.6 Mbp
Abyse	25X Neporters	185360	136Mite	288.4 Mbp
Altyte	SEX Neportare	294799	348836	317.4 Mp

Total costs: ~\$10k >1,000x times cheaper, but at what cost scientifically?

W.R. McCombie

Genomics Arsenal in the year 2015

Population structure of Oryza sativa

Indica

Total Span: 344.3 Mbp Contig N50: 22.2kbp

Aus

Total Span: 344.9Mbp Contig N50: 25.5kbp

Nipponbare

Total Span: 354.9Mbp Contig N50: 21.9kbp

Whole genome de novo assemblies of three divergent strains of rice (O. sativa) documents novel gene space of aus and indica Schatz, Maron, Stein et al (2014) Genome Biology. 15:506 doi:10.1186/s13059-014-0506-z

Oryza sativa Gene Diversity

- Very high quality representation of the "gene-space"
 - Overall identity ~99.9%
 - Less than 1% of exonic bases missing
- Genome-specific genes enriched for disease resistance
 - Reflects their geographic and environmental diversity
- Assemblies fragmented at (high copy) repeats
 - Difficult to identify full length gene models and regulatory features

Overall sequence content

In each sector, the top number is the total number of base pairs, the middle number is the number of exonic bases, and the bottom is the gene count. If a gene is partially shared, it is assigned to the sector with the most exonic bases.

Long Read Sequencing Technology

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

Single Molecule Sequences

"Corrective Lens" for Sequencing

PacBio Assembly Algorithms

PBJelly	PacBioToCA & ECTools	HGAP & Quiver			
		$Pr(\mathbf{R} \mid T)$ $Pr(\mathbf{R} \mid T) = \prod_{k} Pr(R_k \mid T)$ $\overbrace{\mathbf{B}}^{T} \underbrace{\mathbf{B}}^{T} - \underbrace{\mathbf{B}}^{T} \mathbf{B}$ $\frac{\mathbf{Q}^{V} \mathbf{e}^{T} \mathbf{e}^{$			
Gap Filling	Hybrid/PB-only Error	PB-only Correction &			
and Assembly Upgrade	Correction	Polishing			
English et al (2012)	Koren, Schatz, et al (2012)	Chin et al (2013)			
PLOS One. 7(11): e47768	Nature Biotechnology. 30:693–700	Nature Methods. 10:563–569			

PacBio Coverage

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling
- Solid: observed accuracy

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

$$CNS Error = \sum_{i=\lceil c/2 \rceil}^{c} \binom{c}{i} (e)^{i} (1-e)^{n-i}$$

O. sativa pv Indica (IR64)

PacBio RS II sequencing at PacBio

 Size selection using an 10 Kb elution window on a BluePippin[™] device from Sage Science

O. sativa pv Indica (IR64)

Genome size: ~370 Mb Chromosome N50: ~29.7 Mbp

Assembly	Contig	
	NG50	HGAP Read Lengths
MiSeq Fragments 25x 456bp (3 runs 2x300 @ 450 FLASH)	I9 kbp	Max: 53,652bp 22.7x over 10kbp (discarded reads bolow 8500bp)
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	I8 kbp	
HGAP + CA 22.7x @ 10kbp	4.0 Mbp	
Nipponbare BAC-by-BAC Assembly	5.1 Mbp	10000 29000 30000 40000 60000

S5 Hybrid Sterility Locus

Sanger	ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC
Illumina	ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC
PacBio	ACCCTGATATTCTGAGTTACAAGGCATT <mark>C</mark> AGCTACTGCTTGCCCACTGACGAGACC

S5 is a major locus for hybrid sterility in rice that affects embryo sac fertility.

- Genetic analysis of the S5 locus documented three alleles: an indica (S5-i), a japonica (S5-j), and a neutral allele (S5-n)
- Hybrids of genotype S5-i/S5-j are mostly sterile, whereas hybrids of genotypes consisting of S5-n with either S5-i or S5-j are mostly fertile.
- Contains three tightly linked genes that work together in a 'killer-protector'-type system: ORF3, ORF4, ORF5
- The ORF5 indica (ORF5+) and japonica (ORF5-) alleles differ by only two nucleotides

S5 Hybrid Sterility Locus

Sanger Illumina PacBio

...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCCACTGACGAGACC...

S5 Hybrid Sterility Locus

Sanger Illumina PacBio

...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC...

Improvements from 20kbp to 4Mbp contig N50:

- Over 20 Megabases of additional sequence
 - Extremely high sequence identity (>99.9%)
 - Thousands of gaps filled, hundreds of mis-assemblies corrected
- Complete gene models, promoter regions for nearly every gene
 - True representation of transposons and other complex features
- Opportunities for studying large scale chromosome evolution
 - Largest contigs approach complete chromosome arms

Current Collaborations

Long Read Sequencing of SK-BR-3

(Wen-Sheng et al, 2009)

(Navin et al, 2011)

Long read PacBio sequencing of SK-BR-3 breast cancer cell line

- Her2+ breast cancer is one of the most deadly forms of the disease
 - SK-BR-3 is one of the most important models, known to have widespread CNVs
- Currently have 60x coverage with long read PacBio sequencing (mean: ~10kbp)
 - Discovered a complex series of nested duplications and translocations around HER2
 - Currently analyzing breakpoints in an attempt to infer the mutation history

In collaboration with McCombie (CSHL) and McPherson (OICR) labs

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz, MC http://www.biorxiv.org/content/early/2014/06/18/006395

Tomorrow at Noon

Oxford Nanopore Sequencing

Pan-Genomics

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome Goodwin, S et al. (2015) bioRxiv doi: http://dx.doi.org/10.1101/013490

SplitMEM: A graphical algorithm for pan-genome analysis with suffix skips Marcus, S, Lee, H, Schatz, MC (2014) Bioinformatics doi: 10.1093/bioinformatics/btu756

Genome Structure & Function

I. Structure: Sequencing and Assembly Long Read Single Molecule Sequencing

2. Function: Disease Analytics

The role of indels in autism spectrum disorders

Genetic Basis of Autism Spectrum Disorders

Complex disorders of brain development

- Characterized by difficulties in social interaction, verbal and nonverbal communication and repetitive behaviors.
- Have their roots in very early brain development, and the most obvious signs of autism and symptoms of autism tend to emerge between 2 and 3 years of age.

U.S. CDC identify around 1 in 68 American children as on the autism spectrum

- Ten-fold increase in prevalence in 40 years, only partly explained by improved diagnosis and awareness.
- Studies also show that autism is four to five times more common among boys than girls.
- Specific causes remain elusive

What is Autism?

http://www.autismspeaks.org/what-autism

Searching for the genetics behind human disorders and plant phenotypes

Search Strategy

- Currently uses WGS or WES short read resequencing for economic reasons
- Collaborate with Lyon, McCombie, Tuveson, and Wigler labs to examine the genetic basis of cancer, ASD, and other psychiatric disorders
- Also collaborating with the Lippman, Ware, and Gingeras labs to study high value crops

Are there any genetic variants present in affected individuals, that are not present or are present at a substantially reduced rate in their relatives?

Exome sequencing of the SSC

The year 2012 was an exciting year for autism genetics

- 3 reports of ~600 families from the Simons Simplex Collection (parents plus one child with autism and one non-autistic sibling)
- All attempted to find mutations enriched in the autistic children
- All used poor or no tools for indels:
 - Iossifov (343 families) and O'Roak (50 families) used GATK UnifiedGenotype
 - Sanders (200 families) didn't attempt

De novo gene disruptions in children on the autism spectrum lossifov et al. (2012) Neuron. 74:2, 285-299.

De novo mutations revealed by whole-exome sequencing are strongly associated with autism Sanders et al. (2012) Nature. 485, 237–241.

Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations O'Roak et al. (2012) Nature. 485, 246–250.

Scalpel: Haplotype Microassembly

DNA sequence **micro-assembly** pipeline for accurate detection and validation of *de novo* mutations (SNPs, indels) within exome-capture data.

Features

- I. Combine mapping and assembly
- 2. Exhaustive search of haplotypes
- 3. De novo mutations

Accurate de novo and transmitted indel detection in exome-capture data using microassembly. Narzisi, G, O'Rawe, JA, Iossifov, I, Fang, H, Lee, YH, Wang, Z, Wu, Y, Lyon, G, Wigler, M, Schatz MC *Nature Methods* (2014) doi:10.1038/nmeth.3069

NRXN1 *de novo* SNP (auSSC12501 chr2:50724605)

Scalpel Algorithm

Experimental Analysis & Validation

Selected one deep coverage exome for deep analysis

- Individual was diagnosed with ADHD and turrets syndrome
- 80% of the target at >20x coverage
- Evaluated with Scalpel, SOAPindel, and GATK Haplotype Caller

1000 indels selected for validation

- 200 Scalpel
- 200 GATK Haplotype Caller
- 200 SOAPindel
- 200 within the intersection
- 200 long indels (>30bp)

Refined indel analysis

Examine sources of indel errors

- Experimental validation of indels called from 30x whole genome vs. 110x whole exome
- Most of the errors due to microsatellite slippage introduced during exome capture, also missing most long indels

• Recommend PCR-free WGS if at all possible

	All INDELs	Valid	PPV	INDELs >5bp	Valid (>5bp)	PPV (>5bp)
Intersection	160	152	95.0%	18	18	100%
WGS	145	122	84.1%	33	25	75.8%
WES	161	91	56.5%	I	I	100%

Reducing INDEL calling errors in whole-genome and exome sequencing data

Fang, H, Wu, Y, Narzisi, G, O'Rawe, JA, Jimenez Barrón LT, Rosenbaum, J, Ronemus, M, Iossifov I, Schatz, MC[§], Lyon, GL[§] Genome Medicine. doi: 10.1186/s13073-014-0089-z

De novo Genetics of Autism

- In 2,500 family quads we see significant enrichment in de novo likely gene disruptions (LGDs) in the autistic kids
 - Overall rate basically 1:1
 - 2:1 enrichment in frameshift indels
 - Confirmed trends observed in previous studies, contributed dozens of new autism candidate genes.

The burden of de novo coding mutations in autism spectrum disorders. lossifov et al (2014) Nature. doi:10.1038/nature13908

What's next?

Giuseppe Narzisis

Somatic mutation detection

Coding and non-coding mutations in cancer and autism

Srividya "Sri" Ramakrishnan

DOE Systems Biology Knowledgebase

Worlds fastest -omics pipelines

Maria Nattestad

Hi-C Chromatin Interactions

Plant Assembly & Analysis

Tyler Garvin

Single Cell CNV

Tumor and Somatic Heterogeneity

Understanding Genome Structure & Function

Reference quality genome assembly is here

- Use the longest possible reads for the analysis
- Don't fear the error rate
 - Coverage and algorithmics conquer random errors

Population analysis

- Large scale sequencing give us new insights into the origins of disease, the processes of development, and the forces of evolution
- See similar trends in the population analysis of many cells, integration of multiple assays

Also very interested in teaching the next generation of undergraduate and graduate students

Acknowledgements

Schatz Lab

Rahul Amin **Eric Biggers** Han Fang Tyler Gavin James Gurtowski Ke Jiang Hayan Lee 7ak Lemmon Shoshana Marcus Giuseppe Narzisi Maria Nattestad Aspyn Palatnick Srividya Ramakrishnan **Rachel Sherman Greg Vurture** Alejandro Wences

<u>CSHL</u>

Hannon Lab **Gingeras Lab** Jackson Lab Hicks Lab **Iossifov Lab** Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Tuveson Lab Ware Lab Wigler Lab

IT & Meetings Depts. Pacific Biosciences Oxford Nanopore

National Human Genome Research Institute

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

Thank you http://schatzlab.cshl.edu @mike_schatz